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Abstract
In a free electron laser (FEL), the electron beam at the undulator entrance
can have a correlated energy spread. In this paper, we derive an expression
of the seeded FEL Green’s function for the case of an electron beam having
a linear energy chirp, within the one-dimensional Vlasov–Maxwell model.
This Green’s function allows to evaluate the FEL electromagnetic radiation in
both the lethargy and the exponential growth regime, without the asymptotic
approximation introduced in previous works. We show a comparison between
the proposed expression for the Green’s function and the one obtained with a
saddle point approximation, for both cases of short and long undulators.

PACS numbers: 41.60.Cr, 43.58.Ry

1. Introduction

For an x-ray free electron laser (FEL), a high-quality electron bunch with low emittance, high
peak current and energy is needed [1]. During the phases of acceleration, bunch compression
and transportation, the electron beam is subject to radio frequency curvature and to wakefields
effects. Thus, the energy profile of the electron beam can undergo modifications, and in
particular it can experience a linear energy chirp, which has important electromagnetic effects
on the FEL process.

In this paper, we derive the Green’s function for an electron beam having initial linear
energy chirp, by solving the set of 1D Vlasov–Maxwell equations, which describe the motion
of the electrons and the evolution of the radiation field. The effects of the initial linear energy
chirp on the FEL performance, and possible short-pulses generation, have been studied for
the self-amplified spontaneous emission (SASE) FEL [2, 3] and for a seeded FEL as well [4].
However, in [2–4], the Green’s function is derived by using a saddle point approximation. This
kind of solution describes the FEL electromagnetic radiation in the exponential growth regime
with good accuracy, but is not satisfactory in the lethargy regime. The formula that we are
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proposing allows us to evaluate with better accuracy the behavior of the Green’s function in the
exponential growth regime, thus giving the correct characterization of interesting properties
of the FEL light such as frequency shift and frequency chirp. Moreover the FEL radiation can
be correctly evaluated also in the lethargy regime, thus giving a good characterization of the
FEL pulse also for short undulators.

The paper is organized as follows. In section 2, the coupled Vlasov–Maxwell equations
are introduced and solved: this gives an integral representation for the FEL Green’s function.
Subsequently, an exact series expansion for the Green’s function is obtained by performing an
inverse Laplace transform in analytical form. In section 3, two test cases are considered,
involving a short and a long undulator, respectively, and the results obtained with the
new formula for the Green’s function are compared to those obtained with the asymptotic
approximated expressions. Section 4 concludes the work. Mathematical details are given in
the appendix.

2. Solution of the Vlasov–Maxwell equations with an initial value problem

In order to study the start-up of a seeded FEL amplifier, we analyze the set of the Vlasov and
Maxwell equations, which describe the interaction between the relativistic electrons of a beam
and the electromagnetic field [6], assuming the presence of an initial linear energy chirp. We
solve this set of equations providing an exact series expansion for the Green’s function.

2.1. Coupled Vlasov–Maxwell equations

Throughout this paper, we adopt the notations of [2, 4–6]. In particular, we use the
dimensionless variables Z = kwz and θ = (k0 + kw)z − ω0t , where z is the longitudinal
coordinate, kw = 2π/λw, with λw the undulator period, k0 = 2π/λ0, with λ0 the radiation
wavelength, and ω0 = k0c, with c the velocity of light in the vacuum. As a measure of the
energy deviation, we also introduce the quantity p = 2(γ − γ0)/γ0, where γ is the Lorentz
factor of an electron of the beam and γ0 the Lorentz factor in resonance condition. For a planar
undulator, the latter quantity satisfies the relation

λ0 ≈ λw

1 + K2

2

2γ 2
0

, (1)

where the undulator parameter is K ≈ 93.4Bwλw, with Bw the peak magnetic field in tesla and
λw the undulator period in meters. The electron distribution function is denoted as ψ(θ, p,Z)

and the FEL electric field is written in the form E(θ,Z) = A(θ,Z) ei(θ−Z), with A(θ,Z)

being the slow varying envelope function. Following [4], the one dimensional linearized
Vlasov–Maxwell equations are expressed by

∂ψ(θ, p,Z)

∂Z
+ p

∂ψ(θ, p,Z)

∂θ
− 2D2

γ 2
0

(A(θ, Z) eiθ + A∗(θ, Z) e−iθ )
∂ψ0(θ, p, Z)

∂p
= 0, (2)

(
∂

∂Z
+

∂

∂θ

)
A(θ,Z) = D1

γ0
e−iθ

∫
dp ψ(θ, p,Z), (3)

where the asterisk denotes the complex conjugate, the integral is defined on the whole p
domain, and, in SI units:

D1 = eawn0[JJ ]

2
√

2kwε0

and D2 = eaw[JJ ]√
2kwmc2

, (4)
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with e and m being the charge and the mass of the electron, respectively, ε0 the vacuum
permittivity, n0 the electron beam density and [JJ ] = J0

[
a2

w

/
2
(
1 + a2

w

)]−J1
[
a2

w

/
2
(
1 + a2

w

)]
,

where aw = K/
√

2 is the dimensionless rms undulator parameter, while J0 and J1 are the
Bessel functions of the first kind of orders 0 and 1, respectively. Finally, the function ψ0 in
(2) is defined as a solution of the equation ∂ψ

∂Z
+ p

∂ψ

∂θ
= 0.

We assume that the electron beam has a linear chirp, described by the relation

γ = γ0 +
∂γ

∂t

∣∣∣∣t=0
z=0

t (5)

and solve the system of equations (2) and (3) assuming

ψ0 = δ(p + μθ0), (6)

where θ0 = θ − pZ, μ = 2
γ0ω0

∂γ

∂t

∣∣
t=0
z=0

and setting ψ = δ(p + μθ0) + ψ1, with ψ1 a small

perturbation of ψ0.
Solving the Vlasov equation (2), substituting the solution into the Maxwell equation (3),

assuming μZ � 1 and taking into account the arrival times of the single electrons, we have
[4](

∂

∂Z
+

∂

∂θ

)
A(θ,Z) = D1

γ0

∑
j

e−iθj +iμθj Zδ(θ − θj )

+ i(2ρ)3
∫ Z

0
dZ′(Z − Z′) eiμθ(Z−Z′)A(θ, Z′), (7)

where θj = −ω0tj and (2ρ)3 = 2D1D2/γ
3
0 with ρ being the Pierce parameter [7].

Introducing the Laplace transform

f (θ, s) =
∫ ∞

0
dZ e−sZA(θ, Z). (8)

Equation (7) is then rewritten in the Laplace complex frequency domain as

∂f (θ, s)

∂θ
+

(
s − i(2ρ)3

(s − iμθ)2

)
f (θ, s) = A(θ, 0) +

D1

γ0

∑
j

e−iθj δ(θ − θj )

s − iμθj

, (9)

which yields the solution

f (θ, s) =
∫ θ

−∞
dθ ′ e

−s(θ−θ ′)+
∫ θ

θ ′ i(2ρ)3

(s−iμθ ′′)2 dθ ′′
×

⎡
⎣A(θ ′, 0) +

D1

γ0

∑
j

e−iθj δ(θ ′ − θj )

s − i(μθj )

⎤
⎦ . (10)

The term A(θ ′, 0) in equation (10) characterizes the initial seed for a seeded FEL, while the
second term in the square bracket models the shot noise source for the SASE FEL. Since we
are considering only the seeded FEL, in the following we will keep only the term depending
on the initial seed. Thus, equation (10) becomes

f (θ, s) =
∫ θ

−∞
dθ ′ e−s(θ−θ ′)+ i(2ρ)3(θ−θ ′)

(s−iμθ)(s−iμθ ′) A(θ ′, 0). (11)

The inverse Laplace transform gives the FEL field envelope along the undulator, that is

A(θ,Z) = 1

2π i

∫ σ+i∞

σ−i∞
ds esZ

∫ θ

−∞
dθ ′ e−s(θ−θ ′)+ i(2ρ)3(θ−θ ′)

(s−iμθ)(s−iμθ ′) A(θ ′, 0). (12)

Introducing the variable ξ = θ − θ ′ and manipulating, equation (12) can be written as

A(θ,Z) = ρ

∫ ∞

0
dξA (θ − ξ, 0)G (θ, ξ, Z,μ) , (13)

3
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where the Green’s function G (θ, ξ, Z,μ) is defined as

G (θ, ξ, Z,μ) = 1

ρ

∫ σ+i∞

σ−i∞

ds

2π i
es(Z−ξ)+ i(2ρ)3ξ

(s−iμθ)(s−iμ(θ−ξ)) . (14)

For more convenience, the Green’s function in equation (14) is rewritten using the notations
adopted in [3, 5]: ẑ = 2ρZ, ŝ = ρθ , ξ̂ = ρξ , α̂ = −μ/(2ρ2), and p̂ = s/(2ρ). This yields

G
(
ŝ, ξ̂ , ẑ, α̂

) = 1

π i

∫ σ+i∞

σ−i∞
dp̂ ep̂(ẑ−2ξ̂ )+ 2iξ̂

(p̂+iα̂ŝ)(p̂+iα̂(ŝ−ξ̂ )) , (15)

where σ belongs to the convergence region.

2.2. Series expansion of the Green’s function

An approximation of the Green’s function in equation (15) was found for a SASE FEL process
in the case of a linear energy chirped electron beam [2] and for a seeded FEL process with both
linear chirp and energy curvature [5], using a saddle point approximation method. Here we
present an exact expression for the integral in (15), obtained by exploiting the residual theorem
in conjunction with a series expansion of the integrand function. At first, we introduce an
auxillary integral that fullfills the conditions of the Jordan’s Lemma and is related to the original
integral. Subsequently, since the integrand function presents two essential singularities, we
evaluate the two residuals values by expanding it in Laurent series in the neighborhood of each
singularity.

Following the procedure described in the appendix, the Green’s function is expressed by
the following series expression:

G(ŝ, ξ̂ , ẑ, α̂) =
+∞∑
t=0

α̂t

+∞∑
h=0

i1+h+t22+h(ẑ − 2ξ̂ )1+2h+t
∑t

w=0
(−1)wŝwξ̂ 1+h+t−w(h+t−w)!

w!(t−w)!(1+2h+t−w)!

h!(1 + h)!
+ δ(ξ̂ − ẑ/2),

(16)

where δ is the Dirac delta function.
In order to validate the expression in equation (16), we performed the inverse Laplace

transform in equation (15) numerically. This can be done choosing, in the complex plane, a
circular path including the singularities, to evaluate the line integral. The algorithm to perform
the integration has to take into account some numerical issues: in fact, the integration path in
the complex plane should not be too close to the singularities p̂1 = −iα̂ŝ and p̂2 = iα̂(ξ̂ − ŝ),
and furthermore the term ep̂(ẑ−2ξ̂ ) should not be too large compared to the value of the integral.
Since the evaluation of the Green’s function for a single value of ŝ requires the evaluation of
the line integral for different ξ̂ from 0 to ẑ/2, the integration path should be chosen carefully
for each value of ξ̂ , in order to have a reliable result. Furthermore, the numerical integration
does not allow us to evaluate the solution when ξ̂ is close to ẑ/2, because it cannot represent
a Dirac delta. This comparison not only proved that the expression given in equation (16) is
correct but also showed the advantage of having a series expansion instead of using a numerical
integration.

3. Comparison between the proposed series expression for the Green’s function and the
saddle point approximation

In this section, we give some amplitude and phase plots of the Green’s function, calculated
by using equation (16). Such results are compared with those obtained in [5] via saddle point
approximation, setting the energy curvature to zero.

4
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Figure 1. Green’s function plots for a 19-period undulator. Exact formula (bold thickness),
asymptotic approximation (normal thickness). ŝ = 0 (solid), ŝ = 15 (dashed), ŝ = −15 (dash-
dotted). The Green’s function amplitudes for different ŝ coordinates are superposed. The phase is
expressed in radians. (a) Amplitude comparison. (b) Phase comparison.

At first, we consider a short 19 periods undulator, such as that employed in the
FERMI@Elettra project [8]. The normalized length of the undulator is ẑ = 1.87 and the
linear chirp parameter is set to α̂ = 0.04. Figure 1 shows the Green’s functions obtained at
the beam positions: ŝ0 = 0, ŝ1 = 15 and ŝ2 = −15. The system is almost in the lethargy
regime, and it can be noted that the approximated and exact expressions of the Green’s
functions are different in both amplitude and phase. Furthermore, the exact formula in (16)
shows the presence of a Dirac delta pulse at ξ̂ = ẑ/2, which represents the laser seed moving
at the velocity of light throughout the undulator. This allows a correct characterization of the
group velocity of the FEL pulse in the letargy regime, as shown in figure 1 in [9].

As a second test case, we consider a 190-period undulator. The normalized length
of the undulator is ẑ = 18.7, and the linear chirp parameter is set to α̂ = 0.01. In this case,
the system is not in the lethargy regime, and the asymptotic and the exact representations of
the Green’s function are in very good agreement. In particular, as shown in figure 2, the phase
plots of the Green’s function differ only for ξ̂ coordinates where the gain is low. This result
allows us to use also the asymptotic expression of the Green’s function in the exponential gain
regime, obtaining good estimates of both amplitude and phase of the FEL pulse.

In figure 3, we show the evolution of the centrovelocity of the FEL pulse, compared to the
bunch bulk velocity vb, the velocity of light and the theoretical exponential growth envelope
velocity vth. The centrovelocity is computed numerically using the relation

vc(z) = z

〈t〉 = z
∫ +∞
−∞ E(t, z)E∗(t, z) dt∫ +∞

−∞ tE(t, z)E∗(t, z) dt
. (17)

Figure 3 shows the relative difference between the centrovelocity vc and the velocity
of light in the vacuum c, for the two different regimes of lethargy and exponential growth.
Note, in particular, that in the lethargy regime vc is close to the velocity of light, while in the
exponential growth regime it approaches vth = vb + (c − vb)/3, where vb = ω0

k0+kw
.

5
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Figure 2. Green’s function plots for a 190-period undulator. Exact formula (bold thickness),
asymptotic approximation (normal thickness). ŝ = 0 (solid), ŝ = 15 (dashed), ŝ = −15 (dash-
dotted). The Green’s function amplitudes for different ŝ coordinates are superposed. The phase is
expressed in radians. (a) Amplitude comparison. (b) Phase comparison.
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Figure 3. (vc − c)/c as a function of z. The solid thick line represents the centrovelocity of the
FEL pulse. For comparison, the velocity of light is dashed, the theoretical velocity in exponential
growth vth is dotted and the bunch velocity vb is dash-dotted.

4. Conclusion

An exact expression for the FEL Green’s function of a seeded process involving an electron
beam with a linear energy chirp has been derived by solving the coupled Vlasov–Maxwell
equations. The new formula allows an accurate analysis of the evolution of the FEL pulse, in
the presence of a chirped electron beam, in the lethargy start-up phase and in the exponential
growth regime. The formula involves a Dirac delta pulse at ξ̂ = ẑ/2 which represents a
seed advancing in the undulator at the velocity of light that allows to evaluate correctly the
centrovelocity of the FEL pulse, particularly in the lethargy regime. The new formula also

6



J. Phys. A: Math. Theor. 43 (2010) 015403 A A Lutman and R Vescovo

gives the correct Green’s function for a wider range of values of the α̂ parameter, compared
to the formula derived in [4]. This allows a correct evaluation of the FEL evolution in both
amplitude and phase for electron beams having a larger energy chirp.

Appendix. An exact expression of the inverse Laplace transform representing the
Green’s function

We want to calculate the Green’s function I = G(ŝ, ξ̂ , ẑ, α̂) given by (15). To this aim, let us
introduce the auxiliary integral

Iaux = 1

π i

∫ σ+i∞

σ−i∞
ep̂(ẑ−2ξ̂ )

(
e

2iξ̂
(p̂+iα̂ŝ)(p̂+iα̂(ŝ−ξ̂ )) − 1

)
dp̂, (A.1)

which is related to I by the equation

I = Iaux + 2δ(ẑ − 2ξ̂ ) (A.2)

First of all, we observe that the integrand function in (A.1) has two singularities in p̂1 = −iα̂ŝ

and p̂2 = iα̂(ξ̂ − ŝ).
Furthermore, by the residual theorem and the Jordan’s lemma, it results Iaux = 0 for

ẑ−2ξ̂ < 0, while for ẑ−2ξ̂ > 0, the quantity Iaux/2 is equal to the sum of the residuals of the
integrand function in the singularities p̂1 and p̂2. On the other hand, such residuals coincide
with those of the integrand function in (15). Therefore, taking σ > 0, we can write

Iaux =
⎧⎨
⎩2

∑2
j=1 Res

[
ep̂(ẑ−2ξ̂ )+ 2iξ̂

(p̂+iα̂ŝ)(p̂+iα̂(ŝ−ξ̂ )) , p̂ = p̂j

]
for ξ̂ < ẑ/2

0 for ξ̂ > ẑ/2.
(A.3)

Therefore, for ξ̂ < ẑ/2, it results

Iaux = 2
(

a−1|p̂1
+ a−1|p̂2

)
, (A.4)

where a−1|p̂j
is the multiplicative coefficient of the term (p̂ − p̂j )

−1 in the Laurent series
expansion of the integrand function in a neighborhood of the singularity p̂j .

In order to find the coefficients a−1|p̂1
and a−1|p̂2

, the integrand function in (15) can be
expressed as

ep̂(ẑ−2ξ̂ )+ 2iξ̂
(p̂+iα̂ŝ)(p̂+iα̂(ŝ−ξ̂ )) =

+∞∑
n=0

1

n!

(
p̂(ẑ − 2ξ̂ ) +

2iξ̂

(p̂ + iα̂ŝ)(p̂ + iα̂(ŝ − ξ̂ ))

)n

=
+∞∑
n=0

n∑
k=0

1

(n − k)!k!
p̂k(ẑ − 2ξ̂ )k

(2iξ̂ )n−k

(p̂ − p̂1)n−k(p̂ − p̂2)n−k
, (A.5)

where the known expansion formula of the power of a binomial term has been used. To
calculate a−1|p̂1 , in (A.5), we introduce the variable change p̂ = x + p̂1, and to calculate
a−1|p̂2

we set p̂ = x + p̂2, obtaining respectively

+∞∑
n=0

n∑
k=0

1

(n − k)!k!
(x + p̂1)

k(ẑ − 2ξ̂ )k
(2iξ̂ )n−k

xn−k(x + (p̂1 − p̂2))n−k
(A.6)

+∞∑
n=0

n∑
k=0

1

(n − k)!k!
(x + p̂2)

k(ẑ − 2ξ̂ )k
(2iξ̂ )n−k

xn−k(x + (p̂2 − p̂1))n−k
. (A.7)

7
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Equations (A.6) and (A.7) can be written in the form
+∞∑
n=0

n∑
k=0

(ẑ − 2ξ̂ )k(2iξ̂ )n−k

(n − k)!k!

1

xn−k

(x + p̂j )
k

(x + p̂j − p̂3−j )n−k
(A.8)

setting j = 1 and j = 2, respectively. In order to calculate the coefficient for x−1, we consider

the Taylor series expansion of the function (x+p̂j )
k

(x+p̂j −p̂3−j )n−k in (A.8), in the neighborhood of x = 0:

(x + p̂j )
k

(x + p̂j − p̂3−j )n−k
=

+∞∑
w=0

1

w!

dw

dxw

(x + p̂j )
k

(x + p̂j − p̂3−j )n−k

∣∣∣∣
x=0

xw, (A.9)

and we calculate the multiplicative coefficient for xw = xn−k−1. Note that, since w � 0, we
have k � n− 1. After some algebraic manipulations, the coefficient for xw results to be given
by

H(n, k, p̂j , p̂3−j ) = 1

(n − k − 1)!

d(n−k−1)

dx(n−k−1)

(x + p̂j )
k

(x + p̂j − p̂3−j )n−k

∣∣∣∣
x=0

=
min[n−k−1,k]∑

g=0

(−1)n−k−1−g

g!(n − k − 1 − g)!

k!(2n − 2k − g − 2)!

(n − k − 1)!(k − g)!

× p̂
k−g

j (p̂j − p̂3−j )
−2n+2k+1+g. (A.10)

The coefficient a−1|p̂j
is then given by

a−1|p̂j
=

+∞∑
n=0

n∑
k=0

1

(n − k)!k!
(2iξ̂ )n−k(ẑ − 2ξ̂ )kH(n, k, p̂j , p̂3−j ). (A.11)

Substituting (A.11) into (A.4) yields

Iaux = 2
+∞∑
n=0

n−1∑
k=0

(2iξ̂ )n−k(ẑ − 2ξ̂ )k

(n − k)!k!
(H(n, k, p̂1, p̂2) + H(n, k, p̂2, p̂1)) . (A.12)

To simplify (A.12), we observe that both p̂1 and p̂2 are proportional to −iα̂. Setting
˜̂p1 = p̂1

−iα̂ = ŝ and ˜̂p2 = p̂2

−iα̂ = ŝ − ξ̂ , we rewrite Iaux as

Iaux = 2
+∞∑
n=0

n−1∑
k=0

(2iξ̂ )n−k(ẑ − 2ξ̂ )k

(n − k)!k!
(−iα̂)3k−2n+1(H(n, k, ˜̂p1,

˜̂p2) + H(n, k, ˜̂p2,
˜̂p1)),

(A.13)

which using (A.10) becomes

Iaux =
+∞∑
n=0

n−1∑
k=0

(ẑ − 2ξ̂ )k2n−k+1in−2k+1α̂3k−2n+1ξ̂ n−k

(n − k)!(n − k − 1)!

min[n−k−1,k]∑
g=0

(−1)g(2n − 2k − g − 2)!

g!(n − k − 1 − g)!(k − g)!

× (
˜̂p

k−g

1 ( ˜̂p1 − ˜̂p2)
−2n+2k+1+g + ˜̂p

k−g

2 ( ˜̂p2 − ˜̂p1)
−2n+2k+1+g

)
. (A.14)

Since ˜̂p1 = ŝ and ˜̂p2 = ŝ − ξ̂ , (A.14) can be written as

Iaux =
+∞∑
n=0

n−1∑
k=0

(ẑ − 2ξ̂ )k2n−k+1in−2k+1α̂3k−2n+1ξ̂ k+1−n

(n − k)!(n − k − 1)!

×
min[n−k−1,k]∑

g=0

ξ̂ g((−1)gŝk−g − (ŝ − ξ)k−g)(2n − 2k − g − 2)!

g!(n − k − 1 − g)!(k − g)!
(A.15)
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Introducing the index changes

n = 3h + t + 2; k = 2h + t + 1 (A.16)

and recalling that 0 � k � n − 1, we obtain the inequalities

h � 0; t � −2h − 1. (A.17)

Thus, we can write

Iaux =
+∞∑
h=0

+∞∑
t=−2h−1

(ẑ − 2ξ̂ )1+2h+t22+hi−h−t−1α̂t ξ̂−h

h!(h + 1)!

×
min[h,1+2h+t]∑

g=0

(2h − g)!ξ̂ g((−1)gŝ1+2h+t−g − (ŝ − ξ̂ )1+2h+t−g)

g!(h − g)!(2h + t + 1 − g)!
. (A.18)

We now show that the multiplicative coefficients of the terms α̂r with r < 0 are zero. To this
aim, let us indicate by f (p̂, ŝ, ξ̂ , ẑ, α̂) the integrand in equation (15), that is

f (p̂, ŝ, ξ̂ , ẑ, α̂) = ep̂(ẑ−2ξ̂ )+ 2iξ̂
(p̂+iα̂ŝ)(p̂+iα̂(ŝ−ξ̂ )) . (A.19)

Assuming that ŝ, ξ̂ and ẑ are assigned, the integration problem posed above can be reduced to
that of calculating, for any real α̂, the sum of the residual values of f (p̂, ŝ, ξ̂ , ẑ, α̂) in the two
singularities, given by

Res(p̂1) + Res(p̂2) = 1

2π i

∮
C

f (p̂, ŝ, ξ̂ , ẑ, α̂) dp̂, (A.20)

where the integration line C includes, as inner points, the singularities p̂1 and p̂2 as well as
the origin of the complex plane p̂. Therefore, there exists a neighborhood U of α̂ = 0 where,
for any p̂ ∈ C, the function f (p̂, ŝ, ξ̂ , ẑ, α̂) is bounded and has continuous derivatives of any
order with respect to α̂. Therefore, it can be expanded in Taylor series

f (p̂, ŝ, ξ̂ , ẑ, α̂) =
∞∑

n=0

1

n!

(
∂nf

∂α̂n

)
α̂=0

α̂n, (A.21)

where all of the derivatives depend on p̂ (ŝ, ξ̂ and ẑ are assigned). Substituting (A.21) into
(A.20) and integrating yields

Res(p̂1) + Res(p̂2) = 1

2π i

∞∑
n=0

1

n!

[∮
C

(
∂nf

∂α̂n

)
α̂=0

dp̂

]
α̂n. (A.22)

The right-hand side of equation (A.22) does not involve terms α̂n with n < 0. Therefore,
recalling (A.4), the same holds for the series expression in equation (A.18). Taking this into
account, (A.18) can be written as

Iaux =
+∞∑
h=0

+∞∑
t=0

(ẑ − 2ξ̂ )1+2h+t22+hi−h−t−1α̂t ξ̂−h

h!(h + 1)!

×
h∑

g=0

(2h − g)!ξ̂ g((−1)gŝ1+2h+t−g − (ŝ − ξ̂ )1+2h+t−g)

g!(h − g)!(2h + t + 1 − g)!
. (A.23)

The latter expression can be further simplified into the following:

Iaux(ŝ, ξ̂ , ẑ, α̂) =
+∞∑
t=0

α̂t

+∞∑
h=0

i1+h+t22+h(ẑ − 2ξ̂ )1+2h+t
∑t

w=0
(−1)wŝwξ̂ 1+h+t−w(h+t−w)!

w!(t−w)!(1+2h+t−w)!

h!(1 + h)!
.

The Green’s function is finally expressed as

G(ŝ, ξ̂ , ẑ, α̂) = δ(ξ̂ − ẑ/2) + Iaux(ŝ, ξ̂ , ẑ, α̂), (A.24)

which corresponds to equation (16).

9



J. Phys. A: Math. Theor. 43 (2010) 015403 A A Lutman and R Vescovo

References

[1] Akre R et al 2008 Commissioning the Linac coherent light source injector Phys. Rev. ST Accel. Beams 11 030703
[2] Krinsky S and Huang Z 2003 Frequency chirped self-amplified spontaneous-emission free-electron lasers Phys.

Rev. ST Accel. Beams 6 050702
[3] Saldin E L, Schneidmiller E A and Yurkov M V 2006 Self-amplified spontaneous emission FEL with energy-

chirped electron beam and its application for generation of attosecond x-ray pulses Phys. Rev. ST Accel.
Beams 9 050702

[4] Wu J, Murphy J B, Emma P J, Wang X, Watanabe T and Zhong X 2007 Interplay of the chirps and chirped pulse
compression in a high-gain seeded free-electron laser J. Opt. Soc. Am. B 24 484

[5] Lutman A A, Penco G, Craievich P and Wu J 2009 Impact of an initial energy chirp and an initial energy curvature
on a seeded free electron laser: the Green’s function J. Phys. A: Math. Theor. 42 045202

[6] Wang J-M and Yu L-H 1986 A transient analysis of a bunched beam free electron laser Nucl. Instrum. Methods
Phys. Res. A 250 484

[7] Bonifacio R, Pellegrini C and Narducci L M 1984 Collective instabilities and high-gain regime in a free-electron
laser Opt. Commun. 50 373–8

[8] 2007 The Conceptual Design Report (CDR) for the FERMI@Elettra project Synchrotron Trieste Technical
Report No ST/F-TN-07/12

[9] Giannessi L, Spampinati S and Musmeci P 2005 Nonlinear pulse evolution in seeded and cascaded FELs
J. Appl. Phys. 98 043110

10

http://dx.doi.org/10.1103/PhysRevSTAB.11.030703
http://dx.doi.org/10.1103/PhysRevSTAB.6.050702
http://dx.doi.org/10.1103/PhysRevSTAB.9.050702
http://dx.doi.org/10.1364/JOSAB.24.000484
http://dx.doi.org/10.1088/1751-8113/42/4/045202
http://dx.doi.org/10.1016/0168-9002(86)90928-9
http://dx.doi.org/10.1016/0030-4018(84)90105-6
http://dx.doi.org/10.1063/1.2010624

	1. Introduction
	2. Solution of the Vlasov--Maxwell equations with an initial value problem
	2.1. Coupled Vlasov--Maxwell equations
	2.2. Series expansion of the Green's function

	3. Comparison between the proposed series expression for the Green's function and the saddle point approximation
	4. Conclusion
	Appendix. An exact expression of the inverse Laplace transform representing the Green's function
	References

